If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x-112=0
a = 2; b = 12; c = -112;
Δ = b2-4ac
Δ = 122-4·2·(-112)
Δ = 1040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1040}=\sqrt{16*65}=\sqrt{16}*\sqrt{65}=4\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{65}}{2*2}=\frac{-12-4\sqrt{65}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{65}}{2*2}=\frac{-12+4\sqrt{65}}{4} $
| 16t^2-300t+600=0 | | (3/x+1)-(1/x-1)=4/1-x^2 | | 8388608^2=x | | 12x^2-10x=12x+20 | | 14+7x=2(−x+7)−36 | | 7x-9x2=5×-6 | | 2t+3=12 | | 2w+2(4w)=570 | | 2*3m÷4=0 | | 5x+16=42 | | 26=0.5x+34 | | 9/8 =12/p | | -4x(-2K)=0 | | -4×(-2k)=0 | | x-6=x+40 | | 9(x+1)=5(x-3) | | P(n)=0.4n+5.7 | | 8x-6(x-3)=4(4x-6) | | 90-10x+x=57 | | 3.2-4x=9.8-9x | | -2*6a=0 | | 2*6a=0 | | Y^4+5y′′+4y=0 | | 14+9x=74 | | 5n×12=0 | | 4(7x-13)=3(9x-14) | | -y=27 | | 3(3y+7)=5(2y+7) | | 5n*12=0 | | 3x+6-12=2x-2 | | (1/4x)-5=-6 | | 2(3y+7)=5(2y+17) |